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Why isolated quantum systems?
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Fashionable answer

We can realize isolated quantum
systews in ultra cold atoms

—7 X
clean systew of 107 atowms at 10 ' K

Old-fashioned answer
This is still a very fundamental study

We wish to learn what isolated systems can do
(e.q., whether they can thermalize)

After that, we may study the effect played by the
environment



Settings and
main assumptions



The system

Isolated quantuwm systew in a large volume VV
o Particle system with constantp = N/V

& Quantum spin systems e :__. A
Hilbert space Hot o\ o /e 4
Hawiltonian H ,_ N

Energy eigenvalue and the normalized energy eigenstate
H|v;) = Ej|;) (Wjl;) =1

Suppose that one is interested in a single extensive
quantity M with|[M, H| = O in general

extension to n quantities My, ..., M,, is easy



Examples

Two ldenncal bodies in thermal coniact

the evAterqy (yfferevlce acts onthe B
M = H, — Ho boundary NS

General quantum spin chain

translationally invariant shorf-range Hamiltonian
and an observable

L L
He S M= N
aT s

& e




Microcanonical energy shell

Fix arbitrary« and small A, and consider the energy

eigeneigenvalues such that
u—Au < E;/V <u+ Au

relabel 5 so that this correspondstoy) = 1, ...

D L GJOV
microcanonical average of an observable O
W e Z w]|0‘¢3

microcanonical energy shell <y,

the space spanned by |¢0;) with j =1,...,

, D

uV

D



A pure state which represents thermal equilibrium

extensive quantity of interest M
equilibrivm valve m := limy ;oo (M /V)¥
projection onto “nonequilibrium part”

inHsod) B o= P[|N/V —m| > 6]

DEFINITION: A norwalized pure state |©) € Hgp (for
some |V > () represents thermal equilibrium if

(ohP ot < ek

if one measures 1/ /V insuch ), then
(measurement result) — m| < §

with probability > 1 — eV
From | o) we get information about thermal equilibrium



Basic assumption

which guarantees that the system is “healthy”

Ppeq Projection onto “nonequilibrivm part”

THERMODYNAMIC BOUND (TDB):
There is a constanty > O, and one has, for any v

U

(FPosg). . < e 1Y

simply says large fluctuation is exponentially rare in the
MC ensemble (large deviation upper bound)

expected to be valid in ANY uniform thermodynawmic
phase, and can be proven in many cases including the two
examples



Examples

Two ldenncal bodies in thermal coniact

the energy dlfferenceA 2cts on the B
M = Hy — Hs boundary NS

General quantum spin chain

translationally invariant shorf-range Hamiltonian
and an observable
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Examples

Two identical bodies in thermal comaq.yfv
: A ! : ]u P

General quanturnmspin chain

translationally invariant shori-range Hamilf{} ian
and an nheovriakl- U —Y
m| >0 e =6
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Typicality of pure
states which represent
thermal equilibrium



Typicality of thermal equilibrium

overwhelwming majority of states in the energy

shell Hy, represent thermal equilibrium (in a
certain sense)

von Neumann 1929

Llyoid 1988

Sugita 2006

Popescu, Short, Winter 2006

Goldstein, Lebowitz, Tunulkam Zanghi 2006
Reimann 2007

we shall formulate our version
(proof is standard and trivial)




Haar measure on 7.,

a state Hgp O |p) = Z] . |1;) with Sjj e =1
can be regarded as a point on the unit sphere of C

a hatural (basis independent) measure on Hy, is
the uniform measure on the unit sphere

corresponding average
D
ey fdal"'daD(S(l _23:1 ‘O‘j‘Q) gazice
[day---dap (1 -7 |aj]?)
da = d(Rea) d(Ima)
From the symmetry 1

K == e .
OéjOék — D 7.k




Average over 7., and mc-average

operator O  normalized state |p) = Zle a;|Y;)
quantum mechanical egpec’raﬁon value

(plOlp) = D afan (9;]0|¢x)

jrk=1 * 1
average over Hgy, &k = 75 05k
(@lOlp) = " aFak (1|0l
1,k
1 D
%|OWJ > mc

J:1



Average over 7., and mc-average

operator O  normalized state |p) = Zle a;|Y;)
quantum mechanical egpec’raﬁon value

(plOlp) = > ajau (;]0]yn)
fike=1 1

average over H.p, guThatoesREE S SN L

(0|Olp) = " afay (1;|0vk)
1,k

Z ;|O;) = (O)%,

Another way of lookm the microcanonical average



Typicality of thermal equilibrium

Assume Thermodynawic bound (TVBQ &;0:3%53;;

u

<§O‘pneq|90> T <Pmeq>mC = 6—ny

i Markov inequality

THEOREM: Choose a normalized |©) € Hgp, randowmly
according fo the uniform measure on the unit sphere.
Then with probability > 1 — e~ (Y=®)V one has

the pure state represents thermal equilibrium

Almost all pure states |©) € Hgy represent
thermal equilibrium!!



What is thermal equilibrium?

Therwmal equilibriuw is a typical property shared by
the majority of (pure) states in the energy shell

Almost all pure states (with respect to the Haar
measure) |p) € H, represent thermal equlllbnum

. the microcanonical energy shell Hgp {

7 | nonequilibrivm
nonequullbrwm

honequilibrivm

thermal equilibrivm



What is thermal equilibrium?

Therwmal equilibriuw is a typical property shared by
the majority of (pure) states in the energy shell

Almost all pure states (with respect to the Haar
measure) |p) € H, represent thermal equlllbnum

the microcanonical energy shell H},

7 | nonequilibrivm
nonethbrwm

noneqU"b.

therma eqmllbrwm

I-Iow do we get there?



Thermalization
or
the approach to
thermal equilibrium




Question

initial state |©(0)) € Hqn e
unitary time-evolution (1)) = e “**|p(0))
Does| (%)) approach thermal equilibrium?

huwerical Jensen, Shanker 1985
Satio, Takesue, Miyashita 1996
Rigol, Dunjko, Olshanni 2008

mathewatical many many recent works

von Neumann 1929
Tasaki 1998
Reimann 2008
Linden, Popescu, Short, Winter 2009 |
Goldstein, Lebowitz, Mastrodonato, Tumulka, Zanghi 2010
many recent works

We shall formulate possibly the simplest version
which is directly related fo macroscopic physics
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Derivation (easy)

initial state Hyp, 2 |p(0)) = Z] 1 G [5)
time-evolution

Ol = (0 =) e Hita

expectation value of the projec’rion on nonequilibrium

<90(t) |Pneq|90(t)> = / ‘Pneq‘¢k>
lonq—’rime R oscha’res (assume no degeneracy)

1
lim — < ( )‘Pneqlgp Z|CJ| w]‘PHGQ|wJ>

L OO T 0

< \/Z il > (W] Paeqlths)? < \/Z 514 Trpg, [Poed]
j j j




a2azia) aams 1iE : -
lim — [ di(p(t)]Pneqlp(t)) < Z cj|* Trag,y, [ Preq]
effective dimension

TTOO ifil 0
of |0(0)) with respeet to H Degy = (Z \Cg|4>

Reimann 2008, Linden, Popescu, Short, Winter 209

the etfective number of energg eigenstates confrlbu’rmgfo
the expansion [0(0)) =Y ", ¢; 1Y) A==

thermodynawmic 1 A = eft = =
! TrHsh [Pneq] 5 <Pneq>

hound D
{8858 ; o)
e (P(8)[ Preq ¢l i

exponentially small n‘ Deg i8 large enough



Thermalization o

o degeneracy j # j' = E; # E;
& thermodynawmic bound (TPB) ( Poeg ). < e 7V

e+

M ‘effective dimension” is large enough

for many

Deog 1= DN e
it := (Lm lal’) with small7 > 0

coefficients in the expansion |©(0)) = 37, ¢; |v;)

are wildly distributed

THEOREM: For any initial state|0(0)) satisfying the

above condition, | ©(%))represents thermal equilibrium
for most ¢ in the long run




“for most ¢ in the long run”

THEOREM: For any initial state|0(0)) satisfying
above condition, |o(7))represents thermal equilibrium
for most ¢ in the long run

there exist a (large) constant 7 and a subset B C [0, 7/
with|B|/7 < e " such that forany ¢ € [0, 7|\ B

(@(t)] Poeq l0(t)) < eV




How do we get there?

A pure state evolving under the unitary time
evolution thermalizes, i.e., represents thermal

equilibrium for most ¢ in the long run

The main assumption is that the effective
dimension of the initial state is large enough
(exactly the same conclusion for wmixed initial states)

. the microcanonical energy shell Hgsp, {3

nonequilibrium

nonequilibrium

nonequilibrium

49

fhe"uilibrium



On the effective
dimension of

“easily preparable”

initial states




Conjecture

CONJECTURE: For most realistic Hamiltonian of a
macroscopic system, most ‘easily preparable”
initial state (with energy density © ) has an
effective dimension D s not much smaller than
the dimension D of the enerqy shell, and hence
thermalizes.

we still dowt know how to characfenze, e
‘easily preparable” states .

but product states, Gibbs states of a
different Hamiltonian, FCS=MPFS, ...
are easily preparable



A theoretical support for large D 4

4 Let the initial state o(0) be a sufficiently disordered
state, e.g., a product state or a Gibbs state (of a different
Hawmiltonian) at high enough temperatures

[ Quantum Central Limit Theorem : In such a state 0(0),
the probability distribution of the energy (eigenvalues

of ) converges to the Gavssian distributionasV T oo

p(E)
there are almost D
energy eigenstates! 15




Integrable vs non-integrable I-Iamlltokmaingqﬁ6
120

o If the Hawmiltonian H is integrable, one has D g < D

for most sutticiently disordered initial states
(there is equilibration, but not to thermal equilibrivm)

conserved extensive quantities Al, AQ, R An
A;/V ~ a; inthe initial state (QCT or Q Larqe—-Vevua’ﬂon)
then Deg < exp\_Va(al, G L explVoomax  glar, ... an)l o D

AN the energy distribution converges to

/(( wusslan but is extremely sparse
similar sitvation is expected
for many—-body Iocallza’non

o If H is non- m’regrable the distribution
is dense, and one has D ~ D)
(at least numerically, for some models)




Conjecture (refined)

CONJECTURE: For a non-random non-integrable
Hamiltonian of a macroscopic system, most ‘easily
preparable” initial state (with energy densityu)
has an effective dimension D s not much smaller

than the dimension D of the energy shell, and
hence fhermlizes.

Dt = (S (s 1pO)e)?) D= (Cleslt) " HW) = Ejlis)
j=1 =t e(0)) = 2511 ¢ [Yy)
[ Is this true?? (Nuwerical works are not yet conclusive)

[ I mwust be extremely difficult to justify this rigorously
(we only have very artificial and simple examples)




Example

Toy wodel for two identical bodies in contact F A i
H Hl o H2 =218 Hmt $
Hil6k) = exl&r) Halme) = eolne)

1nt|£k>|77€> == - ZT A aamane ‘€k+7>‘77€+’r’>

V5) = Dk ¢ Cisk,e|Ek)|Me) Where|c; i ¢| are dominant
and comparable for k, fwith |E; — (e +€)| S €

We can show D.g ~ D tor p(0) = ﬁ%fbbs 2 ﬁgzlbbs

We can shown thaf the system thermalizes!




What is thermal equilibrium?
[ Typical property of states in the energy shell

[ Most pure states represent thermal equilibrium

How do we get there?

1 Initial states with large effective dimension
thermalizes only by unitary time evolution

[] “Basily preparable” initial states are comectured
o have large effective dimension, > ):1 ;

Deft = (ZW p(()) s

Remaining issues
[ Verify (partially) the conjecture about the

effective dimension of “easily preparable” states
[] Time scale of thermalization :,,




related issuves: 1

Energy Eigenstate Thermalization
Hypothesis (ETH)

<¢j‘pneq|wj> = Ciedidf for a“yj =
each energy eigenstate|v;) represents thermal

I F . von Neumann 1929, Deutsch 1991, Srednicki 1994, and many more
equilibrium | ’ fhiaEzn:

THEOREM: For ANY initial state|2(0)) € Han .

(©(t)) represents thermal equilibrium for most ¢
in the long run :

™ The result is strong but probably it is not necessary tfo
cover ANY initial states

™ It is extremely difficult to verify the assumption in
nontrivial quantum many body systems




related issves: 2

Time scale of thermalization: first step
von Neumann's random Hamiltonian i = UH, U
H, tixed Hamiltonian U randowm unitary on M.,

TREOREM: With probability close to 1, for ANY initial
state|(0)) € Hsnandany 7, we have

_1 fO dt )‘PHQQ‘SO( )> S /8/ Goldstem Hara, Tasaki 2015

OU’r—of—Tlme—Ordered (0TO0) correlator in the MC ensemble
(WER)VW()V) =|o@t)|" WVIWV)

+2{0(2){o(—1)}* + o(—20){a(1)}* — 2[p()[*} (WV)"
#(t) =D 3L, e p()® = {1+ (#/6)}7
A The only time scale is the Boltzmann time hh / (kg T')

™ Only limited aspect of time-dependence in many-body
quanfum systews is captured in this approach  reimann 2016
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