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 Foundation of equilibrium statistical 
mechanics based on pure quantum mechanical 
states in macroscopic isolated quantum systems

 (Hopefully) the simplest picture for 
thermalization (approach to thermal equilibrium)

large-deviation 
theory

von Neumann 1929
Goldstein, Lebowitz,
Mastrodonato, Tumulka, and Zanghi  2010

Macroscopic view point

Tasaki 1998
Reimann 2008
Linden, Popescu, Short, Winter 2009 

Equilibration from large 
“effective dimension”

we do not use ETH (energy eigenstate thermalization hypothesis)

about the talk

http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
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Why isolated quantum systems?

Fashionable answer
We can realize isolated quantum 
systems in ultra cold atoms

Old-fashioned answer
This is still a very fundamental study
We wish to learn what isolated systems can do
(e.g., whether they can thermalize)
After that, we may study the effect played by the 
environment

clean system of 10   atoms at 10    K7 –7
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Settings and 
main assumptions



The system

Energy eigenvalue and the normalized energy eigenstate
Ĥ|ψj� = Ej |ψj� �ψj |ψj� = 1

Hilbert space Htot

Hamiltonian Ĥ

 Particle system with constant ρ = N/V
Isolated quantum system in a large volumeV

 Quantum spin systems 

M̂1, . . . , M̂nextension to n quantities                         is easy

Suppose that one is interested in a single extensive 
quantity       with                        in general       M̂ [M̂, Ĥ] �= 0



Two identical bodies in thermal contact

Ĥ1 Ĥ2
the energy difference

Ĥ = Ĥ1 + Ĥ2 + Ĥint

Examples

M̂ = Ĥ1 − Ĥ2

acts on the 
boundary

General quantum spin chain
translationally invariant short-range Hamiltonian 
and an observable

Ĥ =
L�

i=1

ĥi M̂ =
L�

i=1

m̂i



Microcanonical energy shell

microcanonical average of an observable Ô

microcanonical energy shell
|ψj� j = 1, . . . , Dwith the space spanned by

Fix arbitrary    and small       , and consider the energy 
eigeneigenvalues such that

u ∆u

Hsh

D ∼ eσ0V

u−∆u ≤ Ej/V ≤ u + ∆u

j = 1, . . . , Drelabel    so that this corresponds to  j

�Ô�umc :=
1
D

D�

j=1

�ψj |Ô|ψj�

uV



fixed const. (precision)

DEFINITION:  A normalized pure state                     (for 
some             ) represents thermal equilibrium if

|ϕ� ∈ Hsh

fixed const.�ϕ| P̂neq |ϕ� ≤ e−α V
V > 0

projection onto “nonequilibrium part”
P̂neq := P̂

�
|M̂/V −m| ≥ δ

�

equilibrium value

with probability ≥ 1− e−αV

if one measures             in such       , then|ϕ�M̂/V��(measurement result)−m
�� ≤ δ

From       we get information about thermal equilibrium|ϕ�

A pure state which represents thermal equilibrium
extensive quantity of interest M̂

Htot(in         )

m := limV ↑∞�M̂/V �umc



Basic assumption

simply says large fluctuation is exponentially rare in the 
MC ensemble (large deviation upper bound)
expected to be valid in ANY uniform thermodynamic 
phase, and can be proven in many cases including the two 
examples

THERMODYNAMIC BOUND (TDB):
There is a constant            , and one has, for any Vγ > 0

statement in statistical mechanics

projection onto “nonequilibrium part”P̂neq

which guarantees that the system is “healthy”

�
P̂neq

�u
mc
≤ e−γ V



Two identical bodies in thermal contact

Ĥ1 Ĥ2
the energy difference

Ĥ = Ĥ1 + Ĥ2 + Ĥint

Examples

M̂ = Ĥ1 − Ĥ2

acts on the 
boundary

General quantum spin chain
translationally invariant short-range Hamiltonian 
and an observable

Ĥ =
L�

i=1

ĥi M̂ =
L�

i=1

m̂i
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Two identical bodies in thermal contact

Ĥ1 Ĥ2
the energy difference

Ĥ = Ĥ1 + Ĥ2 + Ĥint

Examples

M̂ = Ĥ1 − Ĥ2

acts on the 
boundary

General quantum spin chain
translationally invariant short-range Hamiltonian 
and an observable

Ĥ =
L�

i=1

ĥi M̂ =
L�

i=1

m̂ithermodynamic bound follows as a corollary of 

the general theory of Ogata 2010

thermodynamic bound can be proved easily

(except at the triple point)

 using classical techniques

�
P̂

�
|(Ĥ1 − Ĥ2)/V | ≥ δ

��u
mc
≤ e

−γ V

�
P̂

�
|(M̂/V )−m| ≥ δ

��u
mc
≤ e−γ V
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Typicality of pure 
states which represent 

thermal equilibrium



Typicality of thermal equilibrium
overwhelming majority of states in the energy 
shell        represent thermal equilibrium (in a 
certain sense)

Hsh

von Neumann 1929 
Llyoid 1988 
Sugita 2006
Popescu, Short, Winter 2006
Goldstein, Lebowitz, Tunulkam Zanghi 2006
Reimann 2007

we shall formulate our version
(proof is standard and trivial)



Haar measure on     
a state
can be regarded as a point on the unit sphere of

α∗
jαk =

1
D

δj,k

dα := d(Reα) d(Imα)

(· · · ) :=

�
dα1 · · · dαD δ

�
1−

�D
j=1 |αj |2

�
(· · · )

�
dα1 · · · dαD δ

�
1−

�D
j=1 |αj |2

�

From the symmetry

with
CD

a natural (basis independent) measure on         is
the uniform measure on the unit sphere 

corresponding average

Hsh � |ϕ� =
�D

j=1 αj |ψj�

Hsh

�D
j=1 |αj |2 = 1

Hsh



Average over       and mc-average
operator
quantum mechanical expectation value

�ϕ|Ô|ϕ� =
�

j,k

α∗
jαk �ψj |Ô|ψk�

�ϕ|Ô|ϕ� =
D�

j,k=1

α
∗
jαk �ψj |Ô|ψk�

Ô |ϕ� =
�D

j=1 αj |ψj�normalized state

average overHsh
α∗

jαk =
1
D

δj,k

Hsh

=
1
D

D�

j=1

�ψj |Ô|ψj� = �Ô�umc



Average over       and mc-average
operator
quantum mechanical expectation value

�ϕ|Ô|ϕ� =
�

j,k

α∗
jαk �ψj |Ô|ψk�

�ϕ|Ô|ϕ� =
D�

j,k=1

α
∗
jαk �ψj |Ô|ψk�

Ô |ϕ� =
�D

j=1 αj |ψj�normalized state

average over

Another way of looking at the microcanonical average

average over D energy eigenstatesaverage over 
infinitely many 

states in the shell

Hsh
α∗

jαk =
1
D

δj,k

Hsh

=
1
D

D�

j=1

�ψj |Ô|ψj� = �Ô�umc



Typicality of thermal equilibrium
Assume Thermodynamic bound (TDB) provable for 

many models

Almost all pure states                     represent
thermal equilibrium!!

|ϕ� ∈ Hsh

|ϕ� ∈ HshTHEOREM: Choose a normalized                     randomly
according to the uniform measure on the unit sphere.
Then with probability ≥ 1− e−(γ−α)V

�ϕ| P̂neq |ϕ� ≤ e−α V

one has

Markov inequality
�ϕ|P̂neq|ϕ� =

�
P̂neq

�u
mc

≤ e−γ V

the pure state         represents thermal equilibrium|ϕ�



What is thermal equilibrium?
Thermal equilibrium is a typical property shared by 
the majority of (pure) states in the energy shell

the microcanonical energy shellHsh

thermal equilibrium

nonequilibrium
nonequilibrium

nonequilibrium

Almost all pure states (with respect to the Haar 
measure)                     represent thermal equilibrium|ϕ� ∈ Hsh
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What is thermal equilibrium?
Thermal equilibrium is a typical property shared by 
the majority of (pure) states in the energy shell

the microcanonical energy shellHsh

thermal equilibrium

nonequilibrium
nonequilibrium

nonequilibrium

Almost all pure states (with respect to the Haar 
measure)                     represent thermal equilibrium|ϕ� ∈ Hsh

How do we get there? 12



Thermalization
or

the approach to 
thermal equilibrium



von Neumann 1929 
Tasaki 1998
Reimann 2008 
Linden, Popescu, Short, Winter 2009 
Goldstein, Lebowitz, Mastrodonato, Tumulka, Zanghi  2010 

|ϕ(t)�Does            approach thermal equilibrium?
numerical

mathematical

Question
initial state |ϕ(0)� ∈ Hsh

We shall formulate possibly the simplest version 
which is directly related to macroscopic physics

unitary time-evolution |ϕ(t)� = e−iĤt|ϕ(0)�

many many recent works

many recent works

Jensen, Shanker 1985
Satio, Takesue, Miyashita 1996
Rigol, Dunjko, Olshanni 2008

http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
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Derivation (easy)
initial state
time-evolution

oscillates (assume no degeneracy)
long-time average

Hsh � |ϕ(0)� =
�D

j=1 cj |ψj�

|ϕ(t)� = e−iĤt|ϕ(0)� =
�

D

j=1 cj e−iEjt |ψj�
expectation value of the projection on nonequilibrium

�ϕ(t)|P̂neq|ϕ(t)� =
�

j,k

c∗jck ei(Ej−Ek)t�ψj |P̂neq|ψk�

lim
τ↑∞

1
τ

� τ

0
dt�ϕ(t)|P̂neq|ϕ(t)� =

�

j

|cj |2�ψj |P̂neq|ψj�

≤
��

j

|cj |4
�

j

�ψj |P̂neq|ψj�2 ≤
��

j

|cj |4 TrHsh [P̂neq]

“diagonal ensemble”



lim
τ↑∞

1
τ

� τ

0
dt�ϕ(t)|P̂neq|ϕ(t)� ≤

��

j

|cj |4 TrHsh [P̂neq]

|ϕ(0)� =
�D

j=1 cj |ψj�
the effective number of energy eigenstates contributing to 
the expansion

Deffexponentially small if         is large enough

lim
τ↑∞

1
τ

� τ

0
dt�ϕ(t)|P̂neq|ϕ(t)� ≤

� D

Deff

�1/2
e−γV/2

Deff :=
� D�

j=1

|cj |4
�−1effective dimension

of             with respect to |ϕ(0)� Ĥ

thermodynamic 
bound

1 ≤ Deff ≤ D

Reimann 2008, Linden, Popescu, Short, Winter 2009

1
D

TrHsh [P̂neq] = �P̂neq�umc ≤ e−γV



coefficients in the expansion                                         
are mildly distributed essential assumption! 

Thermalization

Deff :=
��D

j=1 |cj |4
�−1 ≥ e−ηV D

thermodynamic bound (TDB)

j �= j� ⇒ Ej �= Ej�no degeneracy

provable 
for many 

models

t

THEOREM: For any initial state             satisfying the 
above condition,            represents thermal equilibrium 
for most    in the long run

|ϕ(0)�
|ϕ(t)�

with small η > 0

“effective dimension” is large enough

|ϕ(0)� =
�D

j=1 cj |ψj�

�
P̂neq

�u
mc
≤ e−γ V



“for most t in the long run”

t

0

B

τ

t

THEOREM: For any initial state             satisfying the 
above condition,            represents thermal equilibrium 
for most    in the long run

|ϕ(0)�
|ϕ(t)�

there exist a (large) constant     and a subset
such that for any

B ⊂ [0, τ ]τ

with t ∈ [0, τ ]\B|B|/τ ≤ e−νV

�ϕ(t)| P̂neq |ϕ(t)� ≤ e−α V



A pure state evolving under the unitary time 
evolution thermalizes, i.e., represents thermal 
equilibrium for most t in the long run

The main assumption is that the effective 
dimension of the initial state is large enough
(exactly the same conclusion for mixed initial states)

How do we get there?

the microcanonical energy shellHsh

thermal equilibrium

nonequilibrium
nonequilibrium

nonequilibrium
18



On the effective 
dimension of

 “easily preparable” 
initial states



CONJECTURE: For most realistic Hamiltonian of a  
macroscopic system, most “easily preparable” 
initial state (with energy density    )   has an 
effective dimension        not much smaller than 
the dimension     of the energy shell, and hence 
thermalizes.

Conjecture

we still don’t know how to characterize
 “easily preparable” states

but product states, Gibbs states of a 
different Hamiltonian,  FCS=MPS, ...
are easily preparable

u

D
Deff



A theoretical support for large
 Let the initial state          be a sufficiently disordered 

state , e.g., a product state or a Gibbs state (of a different 
Hamiltonian) at high enough temperatures

Deff
ρ̂(0)

Quantum Central Limit Theorem : In such a state        , 
the probability distribution of the energy (eigenvalues 
of     ) converges to the Gaussian distribution as 

Deff ∼ DWe expect

Ĥ

E

p(E)

O(
√

V )

there are almost D 
energy eigenstates!

uV

ρ̂(0)

V ↑ ∞

Deff :=
��D

j=1�ψj |ρ̂(0)|ψj�2
�−1



Integrable vs non-integrable Hamiltonians
 If the Hamiltonian      is integrable, one has

for most sufficiently disordered initial states
Ĥ Deff � D

(there is equilibration, but not to thermal equilibrium)
Â1, Â2, . . . , Ânconserved extensive quantities 

Âi/V � āi in the initial state (QCT or Q Large-Deviation)
then

the energy distribution converges to
Gaussian, but is extremely sparse

 If      is non-integrable, the distribution 
is dense, and one has 
(at least numerically, for some models)      

Ĥ

Deff ∼ D

similar situation is expected 
for many-body localization

Deff � exp[V σ(ā1, . . . , ān)]� exp[V max
a1,...,an

σ(a1, . . . , an)] ∼ D

Rigol 2016



CONJECTURE: For a non-random non-integrable 
Hamiltonian of a macroscopic system, most “easily 
preparable” initial state (with energy density   ) 
has an effective dimension        not much smaller 
than the dimension     of the energy shell, and 
hence thermalizes.

Deff

D

u

Conjecture (refined)

Deff :=
� D�

j=1

�ψj |ρ̂(0)|ψj�2
�−1

Ĥ|ψj� = Ej |ψj�Deff :=
� D�

j=1

|cj |4
�−1

 Is this true??  (Numerical works are not yet conclusive)
 It must be extremely difficult to justify this rigorously 

(we only have very artificial and simple examples)

|ϕ(0)� =
�D

j=1 cj |ψj�



Toy model for two identical bodies in contact Ĥ1 Ĥ2

Ĥ = Ĥ1 + Ĥ2 + Ĥint

Example

Ĥ1|ξk� = �k|ξk� Ĥ2|η�� = ��|η��

ρ̂(0) = ρ̂Gibbs
β1

⊗ ρ̂Gibbs
β2

We can show                    for  Deff ∼ D

β1 β2 βeqβeq

We can shown that the system thermalizes!

Ĥint|ξk�|η�� = ε
�

τ,τ �=±1 |ξk+τ �|η�+τ ��

|Ej − (�k + ��)| � εand comparable for        with 
|cj;k,�|

k, �

where             are dominant|ψj� =
�

k,� cj;k,�|ξk�|η��

an easily preparable initial state



 Verify (partially) the conjecture about the 
effective dimension of “easily preparable” states

Remaining issues

 Time scale of thermalization

 Typical property of states in the energy shell
What is thermal equilibrium?

How do we get there?
 Most pure states represent thermal equilibrium

 Initial states with large effective dimension 
thermalizes only by unitary time evolution

 “Easily preparable” initial states are conjectured 
to have large effective dimension

Deff :=
� D�

j=1

�ψj|ρ̂(0)|ψj�2
�−1



Energy Eigenstate Thermalization 
Hypothesis (ETH)

each energy eigenstate        represents thermal 
equilibrium

|ψj�

t
THEOREM: For ANY initial state                          ,  
             represents thermal equilibrium for most    
 in the long run
|ϕ(t)�

|ϕ(0)� ∈ Hsh

�ψj |P̂neq|ψj� ≤ e−κV for any j = 1, . . . , D

 The result is strong but probably it is not necessary to 
cover ANY initial states

 It is extremely difficult to verify the assumption in 
nontrivial quantum many body systems

related issues: 1

von Neumann 1929, Deutsch 1991, Srednicki 1994, and many more



THEOREM: With probability close to 1, for ANY initial 
state                          and any    , we have       

Time scale of thermalization: first step

 Only limited aspect of time-dependence in many-body 
quantum systems is captured in this approach

von Neumann’s random Hamiltonian Ĥ = ÛĤ0Û
†

Ĥ0 Û Hshfixed Hamiltonian random unitary on

Goldstein, Hara, Tasaki 2015

τ|ϕ(0)� ∈ Hsh

τ−1
� τ
0 dt�ϕ(t)|P̂neq|ϕ(t)� � β/τ

 The only time scale is the Boltzmann time h/(kBT )

Reimann 2016

related issues: 2

Let H be a D dimensional Hilbert space. Take a Hamiltonian H0 and Hermitian
operators V and W on H. We define random Hamiltonian by H = UH0U † where U is
a unitary on H. We denote by 〈·〉 = D−1TrH[·], and assume that 〈W 〉 = 〈V 〉 = 0.

Let W (t) = eiHtWe−iHt be the time evolution by the random Hamiltonian. Denoting
by bar the average over all the unitary, we have

〈V 2{W (t)}2〉 =
〈
V 2

〉 〈
W 2

〉
+ |φ(t)|2

{〈
V 2W 2

〉
−

〈
V 2

〉 〈
W 2

〉}
, (1)

and

〈W (t)V W (t)V 〉 =|φ(t)|4 〈WV WV 〉
+ 2

{
φ(2t){φ(−t)}2 + φ(−2t){φ(t)}2 − 2|φ(t)|4

}
〈WV 〉2 , (2)

to the leading order in D $ 1. These are not only the average but typical behavior
shared by most of the random Hamiltonians.

We have defined

φ(t) =
1

D

D∑

i=1

eiEit %
∫

dxρ(x) eixt. (3)

If we take

ρ(x) =

{
βeβ(x−E) x ≤ E;

0 x > E,
(4)

then we have

|φ(t)|2 =
1

1 + (t/β)2
(5)

φ(2t){φ(−t)}2 + φ(−2t){φ(t)}2 − 2|φ(t)|4 =
2(t/β)2

{1 + (t/β)2}{1 + 4(t/β)2} (6)

1
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1

|φ(t)|2 = {1 + (t/β)2}−1

Out-of-Time-Ordered (OTO) correlator in the MC ensemble

φ(t) = D−1
�D

j=1 eiEjt



 Verify (partially) the conjecture about the 
effective dimension of “easily preparable” states
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thermalizes only by unitary time evolution
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to have large effective dimension
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� D�
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�ψj|ρ̂(0)|ψj�2
�−1


